Constraint Satisfaction Problem

HU-HTAKM

Website: https://htakm.github.io/htakm_test/

September 16, 2025

1 Introduction to Constraint Satisfaction Problem

Definition 1.1. A constraint satisfaction problem is defined as:
1. X1, X5,---,X,: A set of variables.
2. D1,Da,---,Dy: A set of their corresponding domains of values (X; € D;).
3. C1,C5, -+ ,Cp: A set of constraints.

The goal is to find a solution that satisfies all the constraints.

Example 1.1.1. We consider map colouring. Any two adjacent regions must not be painted with the same

colour.

Variables:
X1, , X10-

D; = {Red, Green, Yellow, Brown} for i = 1,---, 10.

X1 # Xo, X1 # Xa, Xa # Xe, Xo # X3, Xo# Xy, -

5

Constraint: X,
|
= X

Goal:
Assign a colour to all variables that satisfy all constraints. 3

Example 1.1.2. We consider a simple cryptarithmetic puzzle. It should not have a leading zero.

Variables:
G,B,A,M,S,L,E.

X, Xo |
Domain: - J—'i X
K X, / X, 2

LL/‘ X
X X,

9

Domain:
Dx ={0,1,---,9} for X =G,--- ,E, D¢, ={0,1}. B A S E
Constraint:
AIdIff(G, B, A, M, S, L, E), B #0, G # 0, + B ALL
E+L=S5S+10Cy, S+ L+ Cy =FE+10C,, G A M E S

2A+4+Cy = M +10C5, 2B + C3 = A+ 10Cy, G = Oy,
where C1,Cs,C3,C4 € {0, 1}

Goal:
Assign a number to all variables that satisfy all constraints.

https://htakm.github.io/htakm_test/

There are various types of CSP constraints. These include:
1. Unary constraint: Involves only a single variable, e.g., B # 0.
2. Binary constraint: Involves pairs of variables, e.g., X7 # Xs.
3. High-order constraints: Involves three or more variables, e.g., F + L = S + 10C}.
We can use a constraint graph to represent all the binary constraints and high-order constraints.

1. If the CSP only consists of binary constraints, arcs connecting nodes with variables are enough to
represent constraints.

2. If the CSP also consists of high-order constraints, we use square nodes to represent the constraints and
connect them with the involved variable nodes using arcs.

Example 1.1.3. Using the map colouring problem in Example we have the following constraint graph:

2 Solving the Constraint Satisfaction Problem using Search

Using a constraint graph, we can format the search formulation of CSPs.
State space: Each state is defined by the values assigned to the variables.
Initial state: Empty assignment: {}.

Successor function: Assign a value to an unassigned variable.

Goal test: Current assignment is complete and satisfies all constraints.
We can try Depth-First Search (DFS) to solve this problem.

Example 2.0.1. We use the map colouring problem in Example There are 10 variables.

Number of values:
d = 4.

Number of unassigned variables at Level i:
n=11—1.

Branch factor from Level 7 to Level 7 + 1:
Branch factor b = dn = 4(11 — 7).

Number of nodes at Level i:

4711 = 1) (1 =i 1) = 520

Height of the tree: ‘ All nodes with no unassigned variables

Each arc down assigns a variable. Height h = 11.

As you can see, it is highly inefficient. We can identify some issues regarding the search:

1. Variable assignments are commutative.
E.g., {X1 = Red, X5 = Green} is the same as {Xs = Green, X; = Red}.
Modification: Consider assignments to a single variable at each node.
Branching factor: b=d, Number of nodes at Level i: d*~!.

2. Each variable can be assigned any value.
E.g., {X1 = Red, X5 = Red}.
Modification: Consider only values that do not conflict with previous assignments.

After these two modifications, we have a new type of search called backtracking search.

Definition 2.1. Backtracking search is a searching algorithm that involves trying different options and
undoing them if they lead to a dead end. The idea is that:

1. Assign one variable at a time.
2. Check constraints as you go.

3. Backtrack when a variable has no legal values left to assign.

Algorithm 1 Backtracking algorithm
RECURSIVE-BACKTRACKING (assignment, csp)
Input: assignment, csp
Output: solution or failure
if assignment is complete then
return assignment
end if
var <— SELECT-UNASSIGNED-VARIABLE(VARIABLE[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINT[csp] then
add {var = value} to assignment
result + RECURSIVE-BACKTRACKING (assignment, csp)
if result # failure then
return result
end if
remove {var = value} from assignment
end if
end for
return failure

First Call: RECURSIVE-BACKTRACKING({}, csp)

The above backtracking algorithm has the following steps:
1. Use a method to select an unassigned variable (SELECT-UNASSIGNED-VARIABLE(: - -)).
2. Use a method to select a value (ORDER-DOMAIN-VALUES(- - -)).

Check if the variable assigned with the value is consistent with the constraints.

- W

Assign the variable with the value and perform the algorithm again.

5. If a solution exists with that assignment, return the assignment. If not, assign the variable with the
next value.

6. Return failure if there are no available values.

However, how do we determine which variable or value we should select first?

3 Ordering

How do we choose a variable? We may choose the one with the least remaining legal values.

Definition 3.1. Minimum Remaining Values (MRV) is an ordering method of choosing a variable by
choosing the variable with the fewest legal values left in its domain.

We can use a tie-breaking strategy. E.g. The first variable is chosen first.

Example 3.1.1. We use the cryptarithmetic puzzle in Example We have the initial possible values.

Variable G B A M S L E
Possible values || {1} | {1,---,9} | {0,---,9} | {0,---,9} | {0,---,9} | {O,---,9} | {0,---,9}

By MRV, we can choose G since it has the minimum remaining values. We can assign the only value in the
domain 1 to G.

B ASE B ASE
+ BALL=+ BALL
GAMES 1AMES

Why do we do this? If the most constrained variable is left unassigned, we may easily lead to backtracking
later on as the number of remaining legal values decreases in the domain of the variable.
How do we choose a value for a variable? We may choose the one that can be assigned to the fewest variables.

Definition 3.2. Least Constraining Value (LCV) is an ordering method of choosing a value by choosing
the value that rules out the fewest values in the remaining variables.

We can use a tie-breaking strategy. E.g. The smallest value is chosen first.

Example 3.2.1. We again use the cryptarithmetic puzzle in Example Consider the case when we
have already assigned G =1 (C3=1),5=8,L=5and E =3 (C; =0, Cy =1). We check the constraints
and get the following possible values for each variables:

Variable G B A M S|L|FE
Possible values || 1 | {6,7,9} | {0,2,4,6,7,9} | {7,9} | 8 | 5| 3

We want to assign a value for A, which one should we choose? We check the number of values removed in
the domain using the constraints.

Alldiff(G, B,A, M, S, L, E) oo Ad S 012 ;1 61719
2><B+C3:A—|—10 0. OI removed values 11

No. of removed valuesin M || 2 |2 | 1|2 |22
2XA4+1=M+10x C3

w
[\
w
w
w

By LCV, since 4 removes the least number of values of the domains, we assign 4 to A.

B AS83
+ A55 = +
M 3 8

~ 0
2|~ >d
w (U1 00
oo |1 W

B
1A 1

Why do we do this? This allows for more freedom of assignments to the other unassigned variables and
potentially lead to fewer backtracking. Usually, we use both MRV and LCV at the same time.

4 Filtering

In the above example, we check all the values in the domain whether it violates the constraint after we have
assigned the value to the variable. This is highly inefficient as the domain doesn’t change. How about we
keep track of the domain of each value and update the domain as we check the constraint every time?

Definition 4.1. Forward checking is a filtering method of checking the domain of unassigned variables
by crossing off values that violate constraints after adding an existing assignment.

Example 4.1.1. We use the cryptarithmetic puzzle in Example Originally, the domain is listed as
follows:

Variable | G B A M S L E
Domain || {1} | {1,2,---,9} | {0,1,---,9} | {0,1,---,9} | {0,1,---,9} | {0,1,---,9} | {0,1,---,9}
We list out the constraints:
E+L=S+10C,
S+ L+ Cy=FE+10Cy
2A + Cy = M + 10C3
2B+ C3=A+10Cy
G=0C4
After assigning G = 1. The constraints become:
E+L=5+10C
E= o e E+L=5+100
S+L+Cy=FE+10Cy
S+ L+Cy=FE+10C,
2AT G = MG == a0 = M 1100
2B + C3 = A+ 10C. 2 °
o= AT 2B+C3=A+10
1=0C4
We can now update the domain of the values using the constraints.
Variable | G B A M S L E
Domain || 1 | {5,6,7,8,9} | {0,2,---,9} | {0,2,---,9} | {0,2,---,9} | {0,2,---,9} | {0,2,---,9}

By forward checking, we have reduced the size of the domain. Can we do better? Can we detect the failure
even sooner, possibly involve those unassigned variables that do not have direct constraint with the last
assignment?

Definition 4.2. Constraint Propagation is a filtering method which involves reason further from con-
straint to constraint among unassigned variables.

How do we use this method? We can use arc consistency to propagate constraint information among
unassigned variables.

Definition 4.3. An arc X — Y is consistent if for every x € X there is some y € Y which could be
assigned without violating a constraint.

Example 4.3.1. We continue the Example Assume that we have assigned M = 2. After forward
checking, the domain is listed as follows:

Variable || G B A
Domain || 1 | {5,6,7,8,9} | {1,6} | 2

M S L E
{0,3,---

9}

We list all the constraints.

E+L=S5+4+10C,

S+ L+Cy=FE+10C,
2A+ Cy =24 10C%
2B+ C3=A+10

E+L=S+10C
S+L+Ci=F
2A =2+ 10C5
2B+C3=A+10

We can use the arc consistency to check the values by looking at constraint 4. Start with B — A.

1. If B =5, then A can be assigned with 1. However, this violates constraint 3 since C3 = 1 by constraint
4. Therefore, A cannot be assigned with anything.

2. If B =38, then A can be assigned with 6. However, this violates constraint 3 since C3 = 0 by constraint
4. Therefore, A cannot be assigned with anything.

3. If B=6,7,9, then A cannot be assigned with anything.

From this, we can update the domain as below:

However, this means that B cannot be assigned with anything. Therefore, we cannot assign M = 2.

Variable

G

B

A

M

S

L

E

Domain

1

U

{1,6}

2

{0,3,---

9}

{0,3,---

9}

{0,3, -

9}

Example 4.3.2. Continuing the last example. What if we assign M = 8 instead? After forward checking,
the domain is listed as follows:

Variable || G B A M S L FE
Domain || 1 | {5,6,7,9} | {4,9} | 8 | {0,2,---,7,9} | {0,2,---,7,9} | {0,2,---,7,9}

We list all the constraints.

E+L=S+10C; E+L=S+10C;
S+L+C;=FE+10C, N S+L+Ci=F
2A + Cy =8+ 10C5 2A =8+ 10C3
2B+ C3 = A+ 10 2B+ C3=A4+10

We can use the arc consistency to check the values by looking at constraint 4. Start with B — A.
1. If B =17, then A can be assigned with 4.
2. If B=15,6,9, then A cannot be assigned with anything.

From this, we can update the domain as below:

Variable | G | B A M S L E
Domain || 1 | {7} | {4,9} | 8 | {0,2,---,7,9} | {0,2,---,7,9} | {0,2,---,7,9}

Now we check A — B.
1. If A =4, then B can be assigned with 7.
2. If A=9, then B cannot be assigned with anything.

From this, we can update the domain as below:

Variable || G | B A | M S L F
Domain || 1 | {7} | {4} | 8 | {0,2,---,7,9} | {0,2,---,7,9} | {0,2,---,7,9}

Note that after you have changed the domain of a variable, you need to check the arcs connected to that
variable again.

	Introduction to Constraint Satisfaction Problem
	Solving the Constraint Satisfaction Problem using Search
	Ordering
	Filtering

